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acid (VLCFA) pathway. The VLCFAs are fatty acids containing 20 
to 36 carbons synthesized in the endoplasmic reticulum, which are 
crucial for a wide range of biological processes in plants. Their role in 
water-loss control or organ shape has been well studied. These lipids 
are indeed required for the biosynthesis of the plant cuticle,4,5 and 
the generation of sphingolipids,6,7 which can be bioactive molecules 
on their own.8,9 This review focuses on recent studies that highlight 
the involvement of VLCFAs and VLCFA derivatives in the response 
of plants to pathogen attack. It will first describe the general pathway 
and the regulation of VLCFA and VLCFA derivative biosynthesis; 
then the role of these lipids in cell signaling and pathogen resistance 
through different aspects will be discussed.

VLCFA Biosynthesis, Regulation and Use for Wax and 
Sphingolipid Production

The elongation of the C16 and C18 fatty acids into VLCFAs 
(C20-C36 chains) takes place in the endoplasmic reticulum. Elongase 
complexes consisting in four enzymes mediate this step: a β-keto acyl-
coA synthase condensing enzyme (KCS), a β-keto acyl-coA reductase 
(KCR), an enoyl-coA reductase (ECR) and a β-hydroxyacyl-coA 
dehydratase (HCD). Three different pathways then lead to the 
transformation of VLCFAs: in the epidermis, (i) through the “acyl-
reduction pathway”, primary alcohols and wax-esters are formed by 
fatty acyl-coA reductases (FAR) and wax synthases (WS), respec-
tively, (ii) in the “decarbonylation pathway”, VLCFAs are reduced to 
alkanes, which in stems are oxidised by mid-chain alkane hydroxylase 
(MAH1) to form secondary alcohols and ketones (Fig. 1, reviewed in 
ref. 5). Finally, (iii) in all cells, VLCFAs and long chain bases (LCBs) 
(generated from C16 and C18 fatty acids) are the precursors for the 
synthesis of sphingolipids9 (Fig. 1).

The identification of the genes encoding VLCFA biosynthetic 
enzymes has been achieved mainly through mutational approaches. 
FAE1 (fatty acid elongase 1) was the first identified enzyme by the 
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Recent findings indicate that lipid signaling is essential for plant 
resistance to pathogens. Besides oxylipins and unsaturated fatty 
acids known to play important signaling functions during plant-
pathogen interactions, the very long chain fatty acid (VLCFA) 
biosynthesis pathway has been recently associated to plant defense 
through different aspects. VLCFAs are indeed required for the 
biosynthesis of the plant cuticle and the generation of sphingolipids. 
Elucidation of the roles of these lipids in biotic stress responses is 
the result of the use of genetic approaches together with the iden-
tification of the genes/proteins involved in their biosynthesis. This 
review focuses on recent observations which revealed the complex 
function of the cuticle and cuticle-derived signals, and the key role 
of sphingolipids as bioactive molecules involved in signal transduc-
tion and cell death regulation during plant-pathogen interactions.

Introduction

In response to pathogen attack, plants have evolved various mecha-
nisms, both constitutive and inducible, in order to defend themselves. 
During the past 10 years, a number of studies have revealed the role 
of lipids and lipid metabolites during plant-pathogen interactions: (i) 
through the lipoxygenase pathway with the production of oxylipins 
and for example jasmonic acid (JA), which are important signaling 
molecules for defense regulation,1,2 (ii) through the unsaturated fatty 
acid pathway by the remodeling of membrane lipid composition and 
defense signaling,3 and finally (iii) through the very long chain fatty 
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while secondary alcohols and ketones are produced by the mid-chain 
alkane hydroxylase MAH1.24 Finally, ABC transporters such as 
CER5 and WBC11 were shown to be involved in the transport of 
wax constituents through the plasma membrane.25,26

This is only recently that the genes controlling the biosynthesis 
of plant sphingolipids have been identified. In Arabidopsis, the gene 
AtLCB1, encoding the first subunit of the serine palmitoyltransferase 
(SPT), has been recently characterized.27 The second subunit of SPT 
was also identified; however, 2 genes (AtLCB2a and AtLCB2b) encode 
functional isoforms of the LCB2 subunit.28 Recently, two sphingoid 
base hydroxylase genes (SBH1 and SBH2) have also been identi-
fied in Arabidopsis,29 together with an inositolphosphorylceramide 
synthase30 and a ceramidase from rice (OsCDase).31 This enzyme, 
localized in the ER, catalyses the formation of phytoceramide.

Regulation of these biosynthesis pathways remains largely 
unknown. We have recently shown that AtMYB30, a MYB tran-
scription factor, behaves as a transcriptional activator of several genes 

isolation of the fae1mutant altered in VLCFA accumulation in 
seeds.10 Several KCS genes have also been identified through wax or 
cuticle mutants,11-14 then by homology searches. They belong to a 
large gene family in Arabidopsis with 21 members,15,16 hypothesized 
to drive the specificity (chain length, tissue…) of the elongation 
reaction. Concerning the other enzymes of the elongase complex, 
all of them have been recently found in plants, and in contrast to 
KCS, they are encoded by single genes: AtYBR159 codes for the first 
reductase,17 PAS2 revealed to be a 3-hydroxacyl-CoA dehydratase18 
and CER10, the homologue of the yeast gene TSC13, encodes the 
trans-2,3-enoyl-CoA reductase.19

Concerning wax biosynthesis, most of the genes have been 
screened by forward genetics in wax-deficient (cer) mutants. In 
the “acyl-reduction pathway”, CER4 is the major fatty acyl-CoA 
reductase responsible for primary alcohol formation20 while WSD1 
produces wax esters in Arabidopsis stems.21 In the “decarbonylation 
pathway”, CER1 and CER3 are involved in alkane synthesis22,23 

Figure 1. Simplified pathways for VLCFA and VLCFA derivative biosynthesis and transport in Arabidopsis. Regulators of these pathways and their putative 
action are indicated in red. PM: plasma membrane; CW: cell wall.
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this gene encodes an inositolphosphorylceramide synthase (IPCS), 
and is rapidly induced during a pathogen attack, suggesting that 
it serves to increase GIPC (glucosyl inositolphosphorylceramide) 
biosynthesis for a defense related function.30

Together, these results show that multiple steps of the sphin-
golipid biosynthetic pathway are activated by infection, and that 
programmed cell death and disease resistance are in many cases 
tightly associated with this regulatory process. LCBs, ceramides and 
their derivatives might be the critical messengers to control cell death, 
or other defense mechanisms. Consequently it will be determinant 
to identify the targets of these bioactive sphingolipids to understand 
these regulatory mechanisms.

Are Lipid Rafts All-Armed Battleships?

In addition to their possible direct role as signaling components, 
sphingolipids also count among the constitutive elements of the 
plasma membrane (PM). They are also hypothesized to play a role 
in plant defense signaling as such. Sphingolipids were indeed shown 
to be quantitatively predominant, together with sterols, in the deter-
gent insoluble membrane (DIM) fraction of the PM from tobacco, 
Arabidopsis and Medicago.41-43 The lipid raft (LR) model44 assumes 
that because of this distinctive biochemical composition, DIMs are 
organized in vivo in microdomains, and that the dynamic exclusion/
incorporation processes within these domains can regulate signaling 
events. Consistently, DIMs were found to have specific protein 
content.45 Some proteins are predominantly DIM-associated like 
remorins46 or known components of plant defense responses such 
as the NDR1 GPI-anchored protein, suggesting the involvement of 
LRs in defense signaling cascades.47

Although direct involvement of LRs in plant defense responses has 
not been clearly evidenced to date, the cell biology of various plant-
pathogen interactions is consistent with the LR theory. Polarization 
of the cytoskeleton, aggregation of peroxisomes, endoplasmic retic-
ulum and Golgi bodies at the interface with the pathogen are among 
the first observable responses of a plant cell to a pathogen attack 
(reviewed in ref. 48). In addition, polarization and focal accumula-
tion processes are not only found inside the cell but also inside the 
PM itself. Barley and Arabidopsis cells challenged by the powdery 
mildew pathogen Blumeria graminis, were shown to undergo focal 
accumulation, beneath the site of appresorium formation, of a subset 
of GFP-fused PM proteins (the resistance locus O, the protein MLO, 
the ROR2 syntaxin and its Arabidopsis ortholog PEN1), whereas 
other PM proteins (aquaporin isoforms, SYP132 syntaxin) were not 
re-localized upon infection.49 Similarly, the GFP-fused ATP-binding 
cassette transporter PEN3/PDR8 localizes in the PM of Arabidopsis 
un-inoculated leaves and showed strongly focused accumulation at 
sites of Blumeria attempted penetration.50

However, if experimental evidences for filamentous pathogen-
induced focal protein clustering at the PM are emerging, the 
underlying mechanisms remain enigmatic. On the one hand, the 
filipin antibiotic, which binds sterols, shows enhanced labelling at 
Blumeria entry sites, suggesting aggregation of plant LRs or the 
release of sterol-rich fungal material.51 On the other hand, the hexose-
proton symporter HUP1 was shown to segregate in the DIM fraction 
and to show a sterol-dependent spotty distribution in the PM when 
expressed in yeast.52 These results suggest the existence of detergent-
insoluble PM domains in planta. Nevertheless, lateral organization of 

encoding the four enzymes forming the fatty acid elongase complex, 
responsible for VLCFA biosynthesis.32 Interestingly, this regulator 
acts as a positive regulator of a form of programmed cell death 
(PCD) in plants, the Hypersensitive Response (HR).33 Concerning 
wax synthesis, the only transcription factors known to affect this 
pathway belong to the WAX INDUCER (WIN)/SHINE family 
in Arabidopsis.34 The WIN1/SHN1 transcription factor activates 
genes encoding cutin biosynthetic enzymes for instance LACS2, 
and wax biosynthetic genes. However, the control of wax forma-
tion by WIN1/SHN1 may be indirect and may require additional 
transcription factors acting downstream of WIN1/SHN1. Finally, 
a new regulatory pathway controlling cuticular wax accumulation 
was recently discovered in Arabidopsis.35 The key component of this 
pathway is the CER7 ribonuclease, a core subunit of the exosome 
involved in RNA processing and degradation. The putative target of 
this ribonuclease is an mRNA encoding a repressor of transcription 
of the key wax biosynthetic gene CER3.

Plant Sphingolipids as Key Signals during Plant-Pathogen 
Interactions?

Recent studies indicate that sphingolipids, as in animals, 
may play in plants a major signaling role in diverse fundamental 
processes. In terms of biotic stresses, the fungal Alternaria alternata 
f. sp. lycopersici (AAL) toxin has been shown to trigger cell death by 
disruption of sphingolipid metabolism.36 Tomato plants sensitive 
to AAL-toxin accumulate more sphingolipid precursors due to a 
mutation in the Asc gene, encoding a component of the key enzyme 
ceramide synthase. Treatment with another mycotoxin, fumo-
nisin, which is a specific inhibitor of ceramide synthase, leads to a 
dramatic accumulation of LCB and LCB-P in plant tissues. Lack 
of AtDPL1 lyase activity in the mutant lines enhances sphingolipid 
precursors accumulation and exacerbates fumonisin toxicity.37 An 
Arabidopsis mutant, which is fumonisin B1 resistant (fbr 11-1), 
fails to generate reactive oxygen intermediates (ROIs), and cannot 
initiate PCD when the mutant is challenged by fumonisin B1.38 
FBR11 encodes a long-chain base 1 (LCB1) subunit of serine 
palmitoyltransferase (SPT).39 Consequently, free sphingoid bases 
are involved in the control of PCD in Arabidopsis, presumably 
through the regulation of the ROI level upon receiving different 
developmental or environmental cues.38

Another evidence in favor of the role of sphingolipids in the 
control of cell death in the context of plant-pathogen interactions has 
been the characterization of the mutant accelerated cell death 5 (acd5). 
The corresponding gene encodes a ceramide kinase (CERK)40 
and the mutant exhibits spontaneous cell death, shows enhanced 
disease symptoms during a pathogen attack and accumulates CERK 
substrates. This suggests that the balance between the ceramides 
and their phosphorylated derivatives are involved in the modulation 
of PCD and in the control of disease susceptibility. As previously 
mentioned, AtMYB30 has been shown to be a positive regulator of 
the hypersensitive response, through activation of VLCFA biosyn-
thetic genes and increased sphingolipid production,32,33 suggesting 
that sphingolipids would act as pro-cell death signals. The recent 
discovery of the gene ERH1, a gene acting as a negative regulator 
of the HR dependent on the resistance gene RPW8 in response to 
powdery mildew infection, is also clearly in favor of a role of sphin-
golipids in the control of cell death and resistance in plants. Indeed, 
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and virulent bacterial pathogens. However, further investigations 
involving gain-of-function experiments and various plant-pathogen 
interactions will be required before reaching a general rule on the 
contribution of cuticle related genes and cuticle composition to plant 
defense mechanisms.

Conclusions and Perspectives

Within the past few years, there has been a “burst” of articles in the 
field of plant pathology which have revealed the various and major 
roles of lipids, and more recently, the function of very long chain 
fatty acid-based molecules during plant-pathogen interactions (Fig. 
2). Identification of the roles of these lipids in biotic stress responses 
is the result of the use of genetic approaches together with the rapid 
progress made in the identification of the genes/proteins involved in 
lipid biosynthesis. These discoveries highlight the complex function 
of the cuticle and cuticle-derived signals, and the key role of sphingo-
lipids as bioactive molecules involved in signal transduction and cell 
death regulation. However, the results are still fragmentary and need 
further investigations.

Sphingolipids are known to function in all eukaryotic cells as 
membrane structural and signaling components. Intensive research 
in the animal field has shown that these compounds play essential 
regulatory roles in the control of cell death and cell survival.9,61,62 
A number of reports described here suggest that plant sphingolipids 
might be involved in similar regulatory mechanisms. However, this 
notion that there may be common lipid signaling mechanisms for 
the control of cell death in plants and in animals often relies on 
indirect or correlative evidences.63-65 Besides, these compounds 
being active in low amounts and existing under a large number of 
different molecular forms, studies on their biochemistry are still 
limited. Extraction, separation and identification of such compounds 
remain a challenge, and an accurate picture of the different species 
and biosynthetic pathways of plant sphingolipids is not yet available. 
The systematic identification of sphingolipid biosynthesis genes will 
also face the difficult task of assessing their enzymatic/molecular 
function and of the identification of their targets. Together with a 
genetic approach to addressing the question of their importance in 
defense/cell death signaling, these are keys to understand the role of 
sphingolipids in plant cell signaling.

After intensive studies in animal systems, lipid rafts start appearing 
as ubiquitous entry sites for pathogens, in plants as well. Again, 
the gap between animals and plants in term of PM raft functions 
should not be filled in prematurely. But in this case, biochemistry 
is ahead of genetics, and assessing the existence and function of PM 
microdomains in vivo is a major expectation. A key step toward this 
achievement could be the identification of plant counterparts of 
caveolins, or flotillins, that is to say protein markers of lipid rafts that 
allow detection of rafts in living cells. Pathogen attack would then be 
a convenient stimulus to study raft dynamics and role in signaling.

Finally, epicuticular waxes are specific to plants, known to play 
important general functions in the interactions of plants with their 
environment.66 This key adaptation in the evolution of plants67 has 
been shown to influence the issue of plant-pathogen interactions in 
unexpected ways. This is clearly an exciting area of research, and the 
important question of the signaling function of some components of 
the cuticle will need future work, using different plants, pathogens 
and adequate biochemical methods to identify the active molecules 

membrane lipids could not be clearly associated to pathogen-induced 
protein focal accumulation events to date. Therefore, the precise role 
of PM domain clustering in plant defense responses remains poorly 
documented. In addition, it is still not known whether membrane 
focal accumulation is restricted to response toward filamentous 
pathogens or to certain types of plant-pathogen interactions.

The Plant Cuticle, More than a Protective Shell against 
Pathogens

Well-organized cuticle layers, made of cutin and wax polymers, 
covers aerial plant surfaces. In many plant species, cutin originates 
from polymerization of C16 and C18 ω-hydroxylated fatty acids. 
By contrast, wax synthesis requires elongation of C16 and C18 fatty 
acids into VLCFAs. These compounds form the outermost layer in 
epidermal cells, and therefore the first barrier encountered by patho-
gens in the natural environment. Nevertheless the impact of plant 
cuticle on the outcome of the interaction with a pathogen is beyond 
a simple barrier effect.

First, the cuticle can be considered as a reservoir of signals telling 
phytopathogenic fungi that they found a proper host to infect. 
This hypothesis originates from the observation that fungi often 
secrete cutinases when reaching a plant, and that cutin monomers 
induce appresorium formation in Magnaporthe grisea and Erysiphe 
graminis.53,54 Consistently, removal of cuticular waxes reduces 
conidial germination of Blumeria graminis on barley,55 and the 
altered cuticle of the sma4 (allelic to bre1 and lacs2) Arabidopsis 
mutant inhibits Botrytis cinerea spore germination.56 Therefore, a 
thinner, more permeable cuticle does not facilitate the entry of these 
pathogenic fungi but rather arrests their invasion.

In addition to being detrimental to the growth of the pathogen, 
cuticle alteration also favors the onset of defense by the plant, as 
plants can perceive modifications of the cuticle. Exogenous expres-
sion of a fungal cutinase gene in Arabidopsis provides immunity to 
B. cinerea due to the release of fungitoxic compounds and activation 
of other resistance-associated genes. Similarly, release of antifungal 
compounds and enhanced B. cinerea resistance have been observed 
in the bgd mutant that exhibits cuticular defects.57 Increased release 
of antifungal compounds also plays a role in the enhanced resistance 
to Botrytis and Sclerotinia observed in sma4 mutant.58 Nevertheless, 
a positive effect of the cuticle on defense processes is also docu-
mented. The plant cuticle not only protects from water loss, but 
also reduces plant-pathogen recognition and efficient release of 
antifungal compounds in certain cases during the infection process. 
Double knockouts gpat4/gpat8, with strongly reduced cutin content, 
are less resistant to Alternaria brassicicola.59 Whereas more resistant 
to B. cinerea, the sma4 mutant shows a normal susceptible pheno-
type toward Erysiphe cichoracearum.56 These two examples illustrate 
the current consensus that cuticle thickness has a negative effect 
on biotrophic fungal growth. The att1 mutant has a cutin content 
reduced by 30%, and shows enhanced susceptibility to virulent 
Pseudomonas syringae.60 This mutant causes enhanced expression of 
bacterial type III genes, suggesting that cutin-related compounds 
repress bacterial type III genes expression in the plant apoplast. On 
the other hand, att1 displays enhanced resistance to B. cinerea.56

Taken together, these data essentially based on analysis of cuticle-
defective mutants, indicate that cuticle-derived signals act negatively 
on necrotrophic fungal infection and positively on biotrophic fungi 
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and their exact roles. Another intriguing question is related to the 
putative signaling roles of LTPs (Lipid Transfer Proteins). In favour 
of this hypothesis is the identification of DIR1, a putative LTP 
involved in the long distance signaling associated with systemic 
resistance.68 DIR1 has been recently structurally characterized, 
sharing some structural and lipid binding properties with LTP2, 
but displaying some specific features.69 A functional analysis of 
this protein family in Arabidopsis would bring some light on lipid 
signaling and transport. Finally, in depth analysis of the functions of 
VLCFAs and VLCFA derivatives during plant-pathogen interactions 
will undoubtedly provide access to fundamental functions of these 
compounds during plant development.
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